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Overview

• The nEDM@SNS experiment extracts the EDM from the precession of 
3𝐻𝑒 atoms and spin-dependent signal of neutrons capturing on 3𝐻𝑒

• Spin-tracking simulations are very computationally expensive

– We need these simulations to better understand systematic effects that can 

lead to a false EDM measurement

– Need fast spin-tracking simulations for 1011 events to have comparable 

sensitivity to expected experiment precision

– Use Julia and CUDA to run simulations on GPU to utilize parallelization

Spin precession of neutron with gravity



Simulations on GPUs

CPU GPU

Central Processing Unit Graphics Processing Unit

1-64 cores 100 - 7000 cores

Linear Processing Parallel Processing

A handful of operations very rapidly Thousands of operations at once

Images from https://steemit.com/gridcoin/@dutch/hardware-and-project-selection-part-1-cpu-vs-gpu



Spin Precession

• Spin precession described by the Bloch equation

– ሶ𝜎 = 𝛾𝑛𝜎 × 𝐵 −
2𝑑𝑛

ℏ
𝜎 × 𝐸

• Numerically integrated using 5th order Runge-Kutta method

– Used Cash-Karp parameters

–
𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦)

– 𝑘𝑖 = ℎ 𝑓(𝑥𝑛 + 𝑎𝑖ℎ, 𝑦𝑛 + σ𝑗=1
𝑖−1 𝑏𝑖𝑗𝑘𝑗)

– 𝑦𝑛+1 = 𝑦𝑛 + σ𝑖=1
6 𝑐𝑖𝑘𝑖
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Other Integration Methods

• Symplectic integration

– More stable than Runge-Kutta over long durations

– Used for Hamiltonian where ℋ = 𝑇 𝑝 + 𝑉(𝑞)

• Great for UCN in gravitational/magnetic fields

• Reflections/variable step size become problematic

–
𝑑𝑥

𝑑𝑡
= 𝑓(𝑡, 𝑣) and 

𝑑𝑣

𝑑𝑡
= 𝑔(𝑡, 𝑥) satisfy the Hamiltonian

• ℋ = −𝜇𝑛𝜎 ⋅ 𝐵 − 𝑑𝑛𝜎 ⋅ 𝐸

• We investigated the transformation 𝜎 = 𝑥 and ሶ𝜎 = 𝑣

• Turn RK/SI step into a matrix equation

– The differential equation must be linear (like the Bloch equation)

– Matrix operations are fast on GPUs

– Adding physics (reflections, etc.) slows it down

– Time dependence is difficult

– Magnetic field nonuniformities cause problems

Spin precession frequency vs time with 
symplectic integration



Wall Interactions

• Wall reflections are difficult

– Magically change neutron’s direction in the middle 

of a solver step

– To avoid errors, you have to change the step size to 

reach the wall exactly

• Side walls are periodic to avoid variable step size

– Achieved with a GPU kernel

• Problem: top/bottom walls break symmetry 

because of gravity

• Solution: duplicate measurement cell

– Top cell has normal gravity

– Bottom cell has “antigravity”

• Still run into problem of wrong gravity during part 

of step

– Solved by scaling velocity

Neutron oscillating between top and 
bottom cells

Error accumulation with and without adjusting 
velocity after crossing top/bottom wall



Wall Interactions

• Probability of diffuse reflections ∝ cos𝜃𝑖
– ≈20% for normal incident angle

• Diffuse reflections must preserve detailed balance

– For random number 𝑦 ∈ [0,1], 𝜃 = cos−1 1 − 𝑦 1/3

– Azimuthal angle 𝜙 can be chosen from uniform distribution in 2𝜋

• Wall losses added with constant probability to match expected lifetime 

of 2000s

– Lifetime will be experimentally determined for each measurement cell



n+3He capture and 𝛽 decay

• At each step, probability of n+3He capture event is 

dependent on relative spin between UCN and 3He

– ℎΓ3(1 − cos 𝜃)

• Probability of 𝛽 decay is constant

– ℎΓ𝛽

• Γ3 and Γ𝛽 come from lifetimes

– Γ3 =
1

𝜏3
=

1

500 𝑠
Γ𝛽 =

1

𝜏𝛽
=

1

881.5 𝑠

• Plot binned events vs time

• Large-scale decay caused by decrease in number of 

neutrons in the cell

• Zooming in shows oscillation

– Frequency of oscillation with 3He precession signal 

used to determine nEDM Simulated scintillation signal vs time



Simulated Signal Fit & Analysis

• Rate of events is

– Γ 𝑡 = 𝑁 𝑡 × Γ𝛽 + Γ3 1 − cos 𝜔𝑡 + 𝜙0 + Γ𝐵(𝑡)

– 𝑁 𝑡 = 𝑁0𝑒
−𝑡/𝜏𝑒𝑓𝑓

• Maximize log likelihood to obtain fit parameters

• 𝜒2 ≈ −2 log Λ

– Λ = ℒ/ መℒ is the maximum likelihood ratio

• log Λ = σ
𝑖=1
𝑁𝑏𝑖𝑛𝑠[𝑘𝑖 log

𝜆𝑖

𝑘𝑖
− 𝜆𝑖 − 𝑘𝑖 ]

• 𝜔 = 𝛾3 − 𝛾𝑛
𝜔3

𝛾3
+

2𝑑𝑛

ℏ
𝐸

• 1𝜎 ≈ 2.5 × 10−23 𝑒 ∙ 𝑐𝑚

Maximum likelihood fit of simulated scintillation signal



GPU Computation Time

• Simulate ≈ 15,000 particles simultaneously per GPU

• At ≈ 15,000, another set of streaming multiprocessors is required for 

the task, causing a jump in computation time

– Will remain approximately constant until another set is required

• Preliminary computation time per particle per iteration

– CPU: 2 𝜇s/CPU

– GPU: 8 ns/GPU (with 225,000 particles)

GPU: Nvidia GeForce GTX 1080 Ti

Computation time vs number of particles simulated



Summary and Future Work

• GPUs look promising for studying computationally expensive 

systematic effects

• Investigating additional physics

– Realistic B-field maps

– Time-dependent systematics

– Tracking of 3He particles

• Optimize GPU code to get better 

performance

• Compare with CUDA C

• Goal: run hybrid CPU/GPU version on Summit supercomputer



Thank You!
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