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Abstract

The neutron’s electric dipole moment (nEDM) is measured in the Spallation Neutron Source
(SNS) nEDM experiment by detecting the spin-dependent capture events of polarized 3He and
ultracold neutrons in a measurement cell with parallel magnetic and electric fields. Simulations
tracking particles’ spin have been performed to better understand the systematic effects present
in the experiment. However, spin-tracking on CPUs can be slow and computationally expensive.
An additional constraint is maintaining high accuracy for long durations with accumulating
rounding errors. GPU parallelization can be used to track many particles simultaneously and
improve solver efficiency. We will present an overview of the approach and its advantages and
limitations, as well as preliminary results of systematic studies from our simulation to track
the spin of particles in the measurement cell.

1 INTRODUCTION

A permanent neutron electric dipole moment (nEDM) would indicate a direct violation of time
reversal (T) symmetry, and by the CPT theorem, charge conjugation combined with parity (CP)
symmetry. More CP violation is needed to fully understand the baryon asymmetry in the universe,
so the presence of a permanent nEDM would help give insight into the origin of matter.1 The
Spallation Neutron Source (SNS) nEDM experiment2,3 looks to measure, or place a limit on, the
nEDM to a planned sensitivity of dn ≈ 3 × 10−28 e · cm, whereas the current limit is set at
|dn| < 1.8× 10−26 e · cm.4

The SNS nEDM experiment consists of two measurement cells containing polarized 3He and
ultracold neutrons (UCNs). Both cells have a uniform magnetic field, ~B, where one cell has an

electric field, ~E, parallel to ~B and the other cell anti-parallel. Cold neutrons from the SNS are
downscattered into UCNs by superfluid helium in the cells. The spins are aligned with ~B and then
an RF pulse is applied to induce a π/2 spin rotation so the spins are perpendicular to ~B. The spins
are then allowed to precess with Larmor frequency ω:

ω = − 2

h̄
(µn| ~B| ± dn| ~E|), (1)

1



where the positive sign represents parallel ~E and ~B fields and the negative sign anti-parallel, h̄ is
Planck’s constant, µn is the magnetic dipole moment, and dn is the electric dipole moment. For
the | ~B| = 30mG field in the experiment, the Larmor frequency is 549.7rad/s for neutrons and
610.2rad/s for 3He. While the UCNs and 3He precess in the measurement cell, they can undergo
the spin-dependent capture reaction when the spins are anti-parallel:

n+ 3He→ p+ 3H + 764 keV. (2)

Thus, using SQUID sensors to measure the 3He precession frequency, and measuring the scin-
tillation light from products of the capture reactions traveling through the superfluid helium, the
precession frequency of the UCNs can be determined. The difference between the UCN precession
frequencies for parallel ω↑↑ and anti-parallel ω↓↑ electric and magnetic fields in the two measurement
cells is used to determine the nEDM, dn:2

dn =
h̄(ω↓↑ − ω↑↑)

4| ~E|
. (3)

Spin-tracking simulations of particles in the measurement cell are needed to better understand
systematic effects such as the Bloch-Siegert induced false EDM, which is caused by the interaction
of the motion-induced ~E × ~v/c2 field with magnetic field gradients, where ~v is the velocity.3 This
simulation used the Julia language and CUDA to run on Graphical Processing Units (GPUs). A
simulation has previously been developed using CPU.5,6 Since these simulations are computationally
expensive, we used GPU parallelization to simulate more than 104 particles simultaneously per
GPU.

2 SIMULATION

2.1 Spin Precession

To track the neutrons’ spins, the 5th order Runge-Kutta method was used to numerically integrate
the Bloch equation

σ̇ = γσ × ~B − 2dn
h̄
σ × ~E, (4)

where σ is the normalized spin vector and γ is the gyromagnetic ratio.
An initial attempt used symplectic integration to track the spin of the neutrons. Symplectic

integrators are more stable over long durations compared to a non-symplectic method.7 Symplectic
integration is a numerical solver for separable Hamiltonian systems of the form

H = T (~p) + V (~q). (5)

The differential equations dx
dt = f(t, v) and dv

dt = g(t, x) satisfy this Hamiltonian. When ∂ ~B
∂t = 0,

the Bloch equation (Eq. 4) can be written in the form:5

dσ

dt
(t, σ̇) = σ̇

dσ̇

dt
(t, σ) = γ2(σ × ~B)× ~B. (6)

Then, since we don’t have a Hamiltonian of the required form, from these equations we attempted
to use the transformation x = σ, v = σ̇ to get the differential equations in a form where symplectic
integration can be used.
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Figure 1: Neutron Larmor frequency vs propagation time in seconds for symplectic integration

The mean precession frequency using this method was very accurate to about 10−7rad/s, but
the precession frequency oscillated dramatically about the ideal precession frequency by about
±0.1rad/s, as shown in Figure 1. Thus, we decided to use the 5th order Runge-Kutta method to
avoid the large oscillation.

Symplectic integration could still be a useful tool for tracking the position of the particles. Given

a Hamiltonian H = p2

2m +mgz, the position of a particle can be tracked under the effects of gravity.
However, reflections are treated as an abrupt change and don’t conserve the Hamiltonian, which
leads to errors with symplectic integration.

2.2 Handling wall interactions

The walls of the measurement cell have a sufficiently high Fermi potential VF to ensure the UCNs
reflect off of the walls, trapping them in the cell.8 The neutrons do, however, still have a chance to
capture on the walls. Currently, wall losses are modeled with a constant probability at each reflec-
tion, however this could be updated to include the energy-dependent probability. The probability
is tuned to match an expected wall loss lifetime of 2000s, and will eventually be experimentally
determined for each measurement cell.

If the neutron doesn’t capture on the wall, it can undergo either a specular or diffuse reflection.
To model specular reflections, periodic boundary conditions were added. Not only does this make
specular reflections easier to handle, it also preserves accuracy, whereas handling specular reflections
by changing the velocity vector would require a variable step size to maintain accuracy, which can
add significant computation time. One problem with doing this, however, is that the top and bottom
walls do not behave properly, as gravity breaks the symmetry. Instead of reflecting back and begin
decelerating after reflecting off the bottom wall, the neutron will keep accelerating in the same
direction. To solve for this, the cell was duplicated into two, where the top cell has normal gravity
and the bottom cell has antigravity. This presents another problem, however: When crossing one
of these boundaries, the neutron will be accelerating in the wrong direction for a part of the step,
meaning that the resultant speed will be wrong.

To test this, the model was compared to an analytic solution for the particle oscillating between
the two regions. This small increase in speed at each reflection caused an exponential accumulation
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Figure 2: Accumulated error vs propagation time of the particle. The blue line is incorrectly
handling vertical wall reflections, the orange corrects for the speed after a vertical reflection.

of error, as shown in Figure 2. This wrong speed can be corrected by rescaling the velocity vector
to the same speed as the previous step. This reduces the exponential accumulation of error to
linear. The small error in position isn’t important, as the smoothness of the measurement cell wall
surfaces aren’t precise to that level. What is important is that the error in the distribution of
UCN velocities remains small. While not correcting the velocities will lead to them to continually
increase, rescaling them keeps this error small.

The probability of a particle undergoing a diffuse reflection depends on the material properties
of the wall, as well as the incident angle of the neutron. The probability of a diffuse reflection
is proportional to cos θi, where θi is the incident angle between the neutron’s velocity and the
surface’s normal vector. The probability is left as a simulation variable, with a typical value being
around 20% for θi = 0. If a diffuse reflection does take place, the outgoing velocity must preserve,
on average, the density of the phase space of the particles. Thus, the outgoing direction can’t
be chosen from a simple uniform half-spherical distribution, but must be weighted so that for a
uniformly distributed random number y ∈ [0, 1], the outgoing angle θ = cos−1 [(1− y)1/3]. The
azimuthal angle, φ, can be picked from a uniform distribution in 2π.5

2.3 Decay and capture events

After each time step in the simulation, the neutron has a probability of either undergoing β decay
or reacting with the 3He present in the cell. Based upon the mean lifetime9 of τβ = 881.5s and
time step h, the probability of a neutron decaying in any given step is Γβh where Γβ = 1/τβ .10

Based on a n-3He absorption lifetime of τ3 = 500s, the capture rate is Γ3 = 1/τ3 = 2× 10−3Hz.
The capture cross-section is strongly spin-dependent, where the probability is maximal when the
spins are anti-aligned and approximately zero when aligned, giving an effective capture rate Γ′3(θ) =
Γ3(1−cos θ).5 Thus, the probability of a neutron capture in any given step is given as hΓ3(1−cos θ).
3He atoms are not tracked in the simulation, their spins are solved analytically. At this time,
the simulation does not include any ambient background events, which would add an additional
uncertainty when trying to determine the precession frequency.
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2.4 Simulated signal

From this simulation, we can generate a plot of the simulated signal vs time, shown in Figures
3-4. The large-scale plot shows the decay of 221(≈ 2 × 106) neutrons throughout the simulation.
Zooming in shows that the capture events oscillate. The frequency of the capture events can be
determined by fitting the data using the maximum likelihood method. The uncertainty in the fit
parameters can be determined using a χ2 goodness of fit test. A more detailed explanation of this
process is described in Appendix A.

Figure 3: Simulated signal vs time Figure 4: Zoomed in simulated signal vs time

Given the optimal ω from the maximum likelihood fit, the nEDM can be calculated by the
equation

dn =
h̄

2| ~E|
[ω − (γ3 − γn)

ω3

γ3
]. (7)

The uncertainty in dn is taken directly from the uncertainty in ω, which is calculated using Eq.
16. From this, given an input dn = 3.3× 10−27e · cm, the fit calculated dn = (7.2× 10−23 ± 6.5×
10−22) e · cm. While the error here is very large, it falls within 1σ, and additional runs will reduce
this uncertainty.

3 GPU OPTIMIZATION

Spin-tracking simulations are very computationally expensive. Simulating many particles opens up
the possibility of parallelization, so that all particles can be computed at the same time. Thus,
running simulations on GPUs can be an efficient way to run these simulations. We used the CUDA.jl
package11 to run on Nvidia GPUs. The current graphics card being used is the GeForce GTX 1080
Ti.

Our initial approach to optimize the code for GPU was to convert each step into a matrix
form. Matrix multiplication is very fast on GPUs since it can easily be computed in parallel. To
accomplish this, all differential equations - equations of motion and the Bloch equation - had to
be converted into matrix form. Then, the Runge-Kutta method had to be converted into a matrix
equation, as well. While this approach did turn out to be efficient, it lacked the flexibility needed
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Figure 5: Computation time vs number of particles simulated. The jumps indicate the calling of
another set of streaming multiprocessors.

for this simulation, such as being able to include a time-varying magnetic field. See Appendix B
for a derivation of this approach and a more detailed explanation of its benefits and limitations.

A more flexible approach was to write GPU kernels that would handle the different physics.
The first kernel handles the movement of the neutron, including moving the neutron to the next
step, implementing specular and diffuse reflections, as well as wall losses. Then, another kernel
implements the Runge-Kutta algorithm to solve the Bloch equation and calculate the spin at the
next step. Another kernel handles n-3He capture events and β decay, and a final kernel stores
the event type and the state of the neutrons that either got absorbed in the wall, experienced a
capture reaction, or underwent β decay. Those neutrons then get reinitialized at t=0 to not waste
computation time on neutrons that have already experienced an event. This means that not all
particles are necessarily in the same time step. These kernels are called sequentially in a loop for
the desired number of iterations.

This method still is able to utilize GPU parallelization while also allowing additional features
that don’t work in the matrix approach. This method is also very fast, and the computation time
doesn’t start to increase until there are about 15,000 particles being simulated. At that point,
the task requires another set of streaming multiprocessors (SMs), causing a jump in computation
time. Then, the computation time will remain approximately constant until another set of SMs are
required. This behavior is shown in Figure 5.

4 CONCLUSIONS

We successfully built a framework based on a simplified model to track UCNs in the measurement
cell that can produce simulated signals and run efficiently in parallel on GPUs. Future work to
expand on this work will include adding physics to better understand systematic effects leading to
a false EDM measurement, like the Bloch-Siegert induced false EDM. For the nEDM experiment
to meet its sensitivity goal of 3× 10−28e · cm, more computational power is needed to simulate the
1011 events required. Thus, this type of GPU-based or a hybrid CPU/GPU-based software would
be a good application for the Summit supercomputer.
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A SIGNAL PROCESSING

A.1 Maximum Likelihood Fit

The events are sorted into 7ms bins and the number of events per bin is plotted vs time. The rate
of events, Γ(t), is described by the equation

Γ(t) = N(t)× [Γβ + Γ3(1− cos[ωt+ φ0])] + ΓB(t), (8)

where the rate for a single neutron is multiplied by N(t), the number of remaining neutrons in the
measurement cell at time t, described by the equation

N(t) = N0 e
−t/τeff . (9)

This equation describes the decay of the number of neutrons in the measurement cell seen in Fig.
3. The effective decay parameter τeff, to first order, is related to the signal rates by

1

τeff
' Γβ + Γ3 +

1

τloss
. (10)

A background rate ΓB is included in the signal rate but is set to zero in the simulation, as it has
not been added yet. There is also a polarization term for both the neutrons and 3He that has been
excluded as it hasn’t been added to the simulation yet.

To fit the simulated signal, we need an expected number of events in each bin. From the rate
given in Eq. 8, the expected number of events in a given interval ∆t is

λ =

∫
∆t

Γ(t) dt. (11)

Then for each bin, given parameter vector θ, you can calculate the number of expected events.
The maximum likelihood method was used to optimize the fit parameters θ for the generating

rate Γ(t;θ). The logarithmic likelihood is given as

logL =

Nbins∑
i=1

[ki log(λi)− λi − log(ki!)], (12)

where ki is the observed number of events in bin i and λi is the expected number of events. Using
the Nelder-Mead optimization algorithm, this equation was maximized to find θ̂, the parameters
that maximize the likelihood. The obtained fit is plotted in Figure 6 with the data and the expected
number of events from the input parameters.

A.2 Chi-Squared Parameter Scan

To determine the statistical significance of the fit, a χ2 goodness of fit test was performed. The
goodness of fit can be constructed by

χ2 ≈ −2 log Λ, (13)

where Λ = L/L̂ is the maximum likelihood ratio, defined to be

log Λ =

Nbins∑
i=1

[
ki log

(λi
ki

)
− (λi − ki)

]
. (14)
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Figure 6: Maximum likelihood fit of simulated signal.

The estimated correlation matrix Σ comes from the inverse Hessian matrix of Eq. 13 with
optimal fit parameters θ̂. The uncertainty, then, in each parameter comes from the correlation
matrix by

σ2
i = eT

i Σei, (15)

where ei is the unit vector in the direction of interest. So, the error in the parameters can be
calculated by

σ2 = diag−1(H−1). (16)

This was used to determine the uncertainty in the parameters.
Additionally, varying each parameter by the uncertainty given by the previous method, a plot

was generated for the χ2 goodness of fit, shown in Figure 7. The minimum χ2 value in this plot is
1.07 and the maximum is 2.24, with the minimum in the center corresponding to θ̂. Since the plot
is an oval that doesn’t appear to be rotated, the two parameters are uncorrelated.

Figure 7: χ2 parameter scan. N0 and dn are shown to be uncorrelated.
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B RUNGE-KUTTA METHOD IN MATRIX FORM

B.1 Derivation

We want each Runge-Kutta step to be a matrix equation of the form

yn+1 = ARK yn + bRK (17)

so that the next state is a linear combination of the current state. This is only possible if dy/dt is
also a matrix equation:

dy

dt
= Ay + b. (18)

For the Bloch equation (Eq. 4), this differential equation becomes

A =

 0 γBz − 2dn
h̄ Ez −γBy + 2dn

h̄ Ey
−γBz + 2dn

h̄ Ez 0 γBx − 2dn
h̄ Ex

γBy − 2dn
h̄ Ey −γBx + 2dn

h̄ Ex 0

 b =

0
0
0

 .
Then, to find ARK and bRK, we must go through the 4th order Runge-Kutta method:12,1

k1 =
dy

dt
(yn)

= Ayn + b

k2 =
dy

dt
(yn + h

k1

2
)

= A[yn +
h

2
(Ayn + b)] + b

= (A +
h

2
A2)yn + (b +

h

2
Ab)

Continuing to follow this method, we get

k3 =
dy

dt
(yn + h

k2

2
)

= (A +
h

2
A2 +

h2

4
A3)yn + (b +

h

2
Ab +

h2

4
A2b)

k4 =
dy

dt
(yn + hk3)

= (A + hA2 +
h2

2
A3 +

h3

4
A4)yn + (b + hAb +

h2

2
A2b +

h3

4
A3b)

Then, the next step can be calculated by

yn+1 = yn +
1

6
h(k1 + 2k2 + 2k3 + k4)

= (hA +
h2

2
A2 +

h3

6
A3 +

h4

24
A4)yn + (hb +

h2

2
Ab +

h3

6
A2b +

h4

24
A3b)

1While I derive the 4th order Runge-Kutta method for simplicity, higher order RK methods follow a similar
derivation.
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So,

ARK = hA +
h2

2
A2 +

h3

6
A3 +

h4

24
A4 (19)

bRK = hb +
h2

2
Ab +

h3

6
A2b +

h4

24
A3b (20)

B.2 Benefits and Limitations

Since GPUs are very efficient at computing matrix multiplication, this method is incredibly fast.
Additionally, if you don’t need to add any additional physics (reflections, capture events, etc.), then
for n iterations, you can very quickly solve for every iteration by doing yn = Any0 + (1+ A + A2 +
...+ An−1)b. This makes it a great candidate for some applications, but as you need to add more
simulation features, this method becomes slower.

To add more physics, you can just run those operations in between Runge-Kutta steps. However,
there are more significant limitations. This method assumes that: (1) the step size is constant and
(2) the differential equation is time independent. If either of these isn’t satisfied, both ARK and
bRK will change, meaning the matrix will have to be recalculated each step, increasing computation
time significantly.

Because of these limitations, we decided to not use this method and to instead put the Runge-
Kutta step into a GPU kernel. This allows for a time-varying magnetic field. It also removes
the requirement to calculate two matrices for the top cell, with normal gravity, and the bottom
cell, with anti-gravity, and sorting the matrices to determine which particles correspond to which
matrix.
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